Paraparesis, hypermanganesaemia, and polycythaemia: a novel presentation of cirrhosis

S M Gospe, Jr, R D Caruso, M S Clegg, C L Keen, N R Pimstone, J M Ducore, S S Gettner and R A Kreutzer

doi:10.1136/adc.83.5.439

Updated information and services can be found at:
http://adc.bmj.com/cgi/content/full/83/5/439

These include:

References
This article cites 21 articles, 6 of which can be accessed free at:
http://adc.bmj.com/cgi/content/full/83/5/439#BIBL

Rapid responses
You can respond to this article at:
http://adc.bmj.com/cgi/eletter-submit/83/5/439

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Other Neurology (3668 articles)
Liver, including hepatitis (950 articles)

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Archives of Disease in Childhood go to:
http://journals.bmj.com/subscriptions/
Paraparesis, hypermanganeseaemia, and polycythaemia: a novel presentation of cirrhosis

S M Gospe Jr, R D Caruso, M S Clegg, C L Keen, N R Pimstone, J M Ducore, S S Gettner, R A Kreutzer

Abstract
Progressive myelopathy is a rare complication of chronic hepatic disease which has never been reported in the paediatric age group. We describe the 11 year course of an adolescent male with hepatic myelopathy caused by cryptogenic micronodular cirrhosis. His condition has been associated with persistent polycythaemia and extraordinary increases of whole blood manganese, with magnetic resonance imaging evidence of manganese deposition within the basal ganglia and other regions of the brain. The patient has developed neither liver failure nor parkinsonism. The pathophysiological bases of this multiorgan system disorder are described.

Keywords: hepatic myelopathy; manganese; neurotoxicity; erythropoietin

Hepatic myelopathy is a rare neurological complication of chronic liver disease that has only been reported in adults.1–6 Affected patients develop a disabling progressive spastic paraparesis which is almost always associated with overt liver failure and a systemic portal–caval shunt. While hepatic myelopathy has been reported in patients with hepatic failure secondary to congenital liver disorders, these affected individuals did not develop neurological symptoms until adulthood.1–3 We report the first case of hepatic myelopathy associated with cirrhosis presenting during adolescence. Additional unusual features of this patient’s disorder are chronic polycythaemia and extraordinary increases of whole blood manganese, together with magnetic resonance (MR) imaging evidence of heavy metal deposition in the basal ganglia. Despite these features, throughout 11 years of observation, the patient has not developed extrapyramidal symptoms or clinical signs of decompensated cirrhosis.

Case report
A 14 year old white male presented for evaluation of malaise, and stiffness of gait of two months duration. Abnormal laboratory studies included a haematocrit of 0.67, a haemoglobin of 2.25 g/l, and a mean corpuscular volume of 79.3 fL. Mild hepatomegaly and increased tenacious serum. Whole blood manganese, measured via flameless atomic absorption spectrophotometry,11 was greatly increased at 3.48 µmol/l (normal 0.15 (SD 0.05)). In order to determine whether the patient’s increased whole blood manganese concentration was due, in part, to either environmental exposure or a high consumption of manganese rich containing food or supplements, a home visit was made. A three day food recall did not reveal an excessive ingestion of manganese. The patient lived in a residential section of a small Sacramento Valley, California town, and there were no industrial or dump sites nearby. Analysis of the tap water from both the current and previous residences of the patient did not reveal increased concentrations of manganese. Whole blood manganese concentrations...
of the patient’s half sister and neighbour were normal at 0.22 µmol/l and 0.11 µmol/l, respectively. Interestingly, the mother’s concentration was increased at 0.38 µmol/l.

To determine if there was evidence of heavy metal deposition in other organs, MR imaging of the chest, abdomen, and pelvis was performed. This study revealed hepatospleno-megaly with a slight diffuse increase in T1 weighted signal in the liver. A liver biopsy revealed changes consistent with a diagnosis of micronodular cirrhosis including distortion of the architecture by micronodules, focal liver cell dropout, occasional binucleated cells, abundant granular cytoplasm, and no evidence of steatosis or of increased iron stores. There was no indication of hepatic copper deposition via rubeanic acid and rhodamine staining. There was no immunohistochemical evidence of intrahepatic erythropoietin.12 Liver manganese concentration, measured via flame atomic absorption,13 was increased at 0.15 µmol/g (normal 0.05 (SD 0.03)).

The patient had no previous history of jaundice or of exposure to hepatitis, and no alcohol or hepatotoxic drug use. Serological and virological studies for hepatitis B and C viruses and cytomegalovirus were negative, while serological studies for Epstein–Barr virus were consistent with past infection. The patient had no abnormalities of hepatic transaminase activities, bilirubin, ammonia, coagulation, α, antitrypsin, or ceruloplasmin. Serum iron was low at 3.7 µmol/l, iron binding capacity was increased at 116 µmol/l, and ferritin was reduced at 6 µg/l; therefore, there was no evidence of haemachromatosis. The patient does not have Kayser–Fleischer rings, and his urine copper:creatinine ratio of 0.049 is within the normal range (0.013–0.071, GJ Brewer, unpublished data), making a diagnosis of Wilson’s disease very unlikely. Thus, the patient has a diagnosis of cryptogenic micronodular cirrhosis. A hepatic ultrasound revealed hepatomegaly and no increased echogenicity, and a Doppler flow study showed normal hepatic blood flow without evidence of a portal–caval shunt, portal collaterals, or varices. There was no evidence of oesophageal varices on oesophagoscopy.

During 11 years of clinical observation, the patient has had progressive spastic weakness of the legs leading to loss of ambulation and painful extensor spasms which are being treated with intrathecal baclofen. The changes documented on MR imaging of the brain have been stable, and an electroencephalogram (EEG) shows slight diffuse slowing. He has developed neither mental status changes nor extrapyramidal dysfunction. Whole blood manganese concentrations have consistently remained increased, ranging from 2.93 to 3.66 µmol/l. The patient has had persistent polycythaemia, requiring twice weekly phlebotomy. During this time period, erythropoietin concentrations have ranged from 5 to 473 U/l (normal 0–16 U/l) and these concentrations have not correlated with the haematocrit. The patient has had no deterioration of hepatic function, plasma ammonia is 30 µmol/l, serum α fetoprotein is 10.7 µg/l, and there has been no radiographic evidence of the development of a hepatic malignancy. While he has a firm, irregular, normal sized liver, he has no stigmata of chronic liver disease such as jaundice, palmar erythema, spider nevi, prominent abdominal veins, or ascites.

Discussion
This patient presented with polycythaemia together with a progressive spastic paraparesis. His initial evaluation did not reveal a cause for the erythrocytosis which has been controlled with twice weekly phlebotomy. His myelopathy
A novel presentation of cirrhosis

reported to range from 0.27 to 2.02 µmol/l, 7–9 increased16 (data not shown), and she had normal manganese absorption values were only slightly abnormal concentration of blood manganese, her while the patient’s mother had a higher than was measured in individuals with However, his blood manganese concentrations were in the range measured in these patients, 7–9 shown increased blood manganese concentrations and MR imaging evidence of basal ganglia heavy metal deposition has also been reported in patients receiving chronic parenteral nutrition with high manganese concentrations. Significantly, there was resolution of the MR imaging abnormalities after manganese was removed from the parenteral nutrition solution.11–13 While it could be speculated that the high whole blood manganese concentrations observed in this subject were secondary to a higher than normal amount of dietary manganese uptake, two lines of evidence argue against this. Firstly, the dietary history of the patient did not reveal a high amount of manganese intake. Secondly, although the transport of manganese across the intestinal tract is still poorly understood, it is thought to occur through mechanisms similar to those regulating non-haem iron uptake.17 20 Our observation of low to normal iron stores in this patient would argue against a higher than normal intestinal uptake of these two metals. Given the above, we suggest that the manganese accumulation in this individual is caused by an impairment in the secretion of excess manganese into the gut, rather than an increased absorption of the metal.

The current patient presented with polycythaemia, which has persisted for 11 years. Polycythaemia has been reported in cirrhotic patients, either caused by hepatic synthesis of erthropoietin from an associated hepatocellular carcinoma,12 or presumably caused by chronic hypoxia from intrapulmonary shunting or portal–pulmonary shunts.21 While our patient does have increased erthropoietin, he does not have evidence of either a hepatic tumour, or hepatic synthesis of erthropoietin. In addition, he has not shown any evidence of hypoxia, including cyanosis or clubbing. Alternatively, patients with cirrhosis may have abnormal hepatic clearance of erthropoietin, thereby leading to polycythaemia.22 This may be the cause of the polycythaemia in our patient. In addition, manganese and other transition metals have been shown in animal studies to have effects on erythropoietin gene regulation which are similar to those induced by hypoxia.23 Therefore, the increased manganese concentrations in our patient may also play a role in the pathogenesis of the polycythaemia.

While our patient is the youngest individual reported with hepatic myelopathy, there are other unique features of his disorder. With the exception of slight slowing of the EEG, which may indicate a mild hepatic encephalopathy, he has had no other evidence of either liver failure or portal–systemic shunting. Indeed, his cirrhosis was cryptogenic, and was diagnosed only after abdominal imaging showed hepatosplenomegaly and a subsequent liver biopsy. To our knowledge, there have been no other cases
of hepatic myelopathy reported in patients without evidence of either liver failure or portal–systemic shunting. This patient also has extraordinary increases of whole blood manganese with manganese deposition within the basal ganglia and other brain regions. Despite these findings, presently he has no clinical evidence of extrapyramidal dysfunction. This patient’s disorder is also characterised by increased liver manganese concentrations. It is interesting to speculate that the increased liver manganese may have contributed to either the initiation or progression of the cirrhosis. Acute loads of manganese have been shown to result in the induction of intrahepatic cholestasis. In addition, changes in cellular manganese concentration can give rise to alterations in the redox potential of the cell. The functional consequences of these changes are not yet understood.

The pathophysiological mechanism of hepatic myelopathy in our patient has not been established. As many patients with chronic liver disease and increased blood manganese have extrapyramidal symptoms but no evidence of a myelopathy, we cannot firmly establish that our patient’s hepatic myelopathy is a result of manganese neurotoxicity. Alternatively, some other neurotoxin which is not cleared by this patient’s cirrhotic liver may have led to corticospinal tract demyelination. While this patient does not have clinical extrapyramidal dysfunction, given his extraordinary whole blood manganese by flameless atomic absorption spectrophotometry and its use as an indicator of manganese status in animals. Anal Biochem 1986; 157:12-18.


Tobias E 1996. The functional consequences of these changes are not yet understood.

The pathophysiological mechanism of hepatic myelopathy in our patient has not been established. As many patients with chronic liver disease and increased blood manganese have extrapyramidal symptoms but no evidence of a myelopathy, we cannot firmly establish that our patient’s hepatic myelopathy is a result of manganese neurotoxicity. Alternatively, some other neurotoxin which is not cleared by this patient’s cirrhotic liver may have led to corticospinal tract demyelination. While this patient does not have clinical extrapyramidal dysfunction, given his extraordinary whole blood manganese by flameless atomic absorption spectrophotometry and its use as an indicator of manganese status in animals. Anal Biochem 1986;157:12-18.


